{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0",
   "metadata": {},
   "source": [
    "[![image](https://jupyterlite.rtfd.io/en/latest/_static/badge.svg)](https://demo.leafmap.org/lab/index.html?path=notebooks/88_nasa_earth_data.ipynb)\n",
    "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/opengeos/leafmap/blob/master/docs/notebooks/88_nasa_earth_data.ipynb)\n",
    "[![image](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/opengeos/leafmap/HEAD)\n",
    "\n",
    "**Searching and downloading NASA Earth science data products**\n",
    "\n",
    "Leafmap builds upon the [earthaccess](https://earthaccess.readthedocs.io) Python package to search and download NASA Earth science data products, making it easier visualize the footprints of the data products and download them interactively."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# %pip install leafmap earthaccess mapclassify"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import leafmap\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3",
   "metadata": {},
   "source": [
    "To download and access the data, you will need to create an Earthdata login. You can register for an account at [urs.earthdata.nasa.gov](https://urs.earthdata.nasa.gov)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4",
   "metadata": {},
   "outputs": [],
   "source": [
    "leafmap.nasa_data_login()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5",
   "metadata": {},
   "source": [
    "You can search data by short name, doi, concept id, etc. You can find the list of NASA Earth science data products from the [NASA-Earth-Data](https://github.com/opengeos/NASA-Earth-Data) repo. The example below shows how to show the metadata of the 9,000+ NASA Earth science data products."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6",
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv\"\n",
    "df = pd.read_csv(url, sep=\"\\t\")\n",
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7",
   "metadata": {},
   "source": [
    "To search data, specify the short name, bounding box, date range, etc. To return the footprints of the data, set `return_gdf=True`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8",
   "metadata": {},
   "outputs": [],
   "source": [
    "results, gdf = leafmap.nasa_data_search(\n",
    "    short_name=\"GEDI_L4A_AGB_Density_V2_1_2056\",\n",
    "    cloud_hosted=True,\n",
    "    bounding_box=(-73.9872, -33.7683, -34.7299, 5.2444),\n",
    "    temporal=(\"2020-07-01\", \"2020-07-31\"),\n",
    "    count=-1,  # use -1 to return all datasets\n",
    "    return_gdf=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9",
   "metadata": {},
   "source": [
    "Visualize the footprints of the data on an interactive map."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "10",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf.explore()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11",
   "metadata": {},
   "source": [
    "Download the data to your local drive. Let's download the first 5 data products."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12",
   "metadata": {},
   "outputs": [],
   "source": [
    "leafmap.nasa_data_download(results[:5], out_dir=\"data\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "13",
   "metadata": {},
   "source": [
    "Use the interactive GUI to search and download data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14",
   "metadata": {},
   "outputs": [],
   "source": [
    "from leafmap import leafmap"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15",
   "metadata": {},
   "outputs": [],
   "source": [
    "m = leafmap.Map()\n",
    "m.add(\"nasa_earth_data\")\n",
    "m"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16",
   "metadata": {},
   "source": [
    "![](https://i.imgur.com/yGRCfsb.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17",
   "metadata": {},
   "source": [
    "To access the search results as a GeoDataFrame:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "18",
   "metadata": {},
   "outputs": [],
   "source": [
    "# m._NASA_DATA_GDF"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "19",
   "metadata": {},
   "source": [
    "To download the data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "20",
   "metadata": {},
   "outputs": [],
   "source": [
    "# leafmap.nasa_data_download(m._NASA_DATA_RESULTS, out_dir=\"data\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}